Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Seok Moo Hong"

Article category

Keywords

Publication year

Authors

"Seok Moo Hong"

Regular

Shape Optimization of Cable Chain to Minimize Assembly Stress and Maintained Retention Force under Tensile Loading
Min Je Kim, Min Seong Oh, Soon Jae Hwang, Do Hyoung Kim, Seok Moo Hong
J. Korean Soc. Precis. Eng. 2026;43(2):207-215.
Published online February 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.117
Cable chains are essential in the semiconductor industry for preventing the twisting or sagging of moving cables. They can be broadly categorized into two types based on their fastening methods, with rivet-based assembly being the most common. An alternative method utilizes integral locking features without rivets, which simplifies manufacturing and reduces production costs. However, integral cable chains are more susceptible to breakage during assembly, limiting their use in various industrial environments.This study introduces a structural design approach aimed at minimizing localized stress during assembly while ensuring the cable chain meets the required retention force. Design variables were selected from the modifiable features of the integral cable chain. Through sensitivity analysis, we identified key variables that significantly influence the retention force, which allowed us to reduce the number of design iterations. By employing finite element analysis and response surface methodology, we derived an optimal shape that achieved the target pull-out force and resulted in a 9.7% reduction in assembly stress compared to the original design.
  • 168 View
  • 3 Download
Article
A Study on the Contact Pressure Trend of Plastic Seals based on Operating Conditions and Geometric Sensitivity Analysis
Hyeong Jun Shim, Min Seong Oh, Su Bong An, Hee Jang Rhee, Seok Moo Hong
J. Korean Soc. Precis. Eng. 2025;42(8):621-627.
Published online August 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.042
The use of environmentally friendly, lubricant-free plastic seals in the rotating parts of robots and machines is on the rise. However, variations in seal geometry and operating conditions can influence the contact pressure between the seal and shaft, potentially leading to poor sealing performance, premature wear, or debris ingress. Therefore, advanced design optimization is essential. In this study, we conduct a parametric study and sensitivity analysis to enhance the performance of plastic seals. Finite element analysis (FEA) is carried out using a 2D axisymmetric model with interference fit contact conditions to accurately simulate the behavior of the seal and shaft. We verify the reliability of the analysis by comparing the deformation of the seal diameter before and after shaft insertion with experimental measurements obtained using a 3D tactile measurement device. We analyze four design variables: pressure, temperature, seal diameter, and coefficient of friction, considering seal contact pressure as the objective function. Sensitivity analysis is performed to determine the impact of these design variables on contact pressure and to identify trends.
  • 72 View
  • 7 Download