In machining operations, dynamometers are typically used to directly measure the forces acting on cutting tools. However, their high cost and complex setup restrict their use to laboratory environments, making them unsuitable for real-time monitoring in general production settings. To overcome this limitation, this study proposes an autoencoder-based learning model for estimating cutting forces using only spindle vibration signals acquired during milling. The model features a deep neural network (DNN) that takes processed spindle vibration signals as input and predicts latent features derived from cutting force signals through an autoencoder. These predicted latent features are then fed into a pretrained decoder to reconstruct the corresponding cutting force signals. To enhance the model's accuracy and robustness, the raw vibration signals sampled at 20 kHz were filtered with a bandpass filter that spans the effective frequency range of 20–2500 Hz, effectively removing irrelevant noise. For validation, an accelerometer was mounted on the spindle head of a milling machine, and vibration data were collected during cutting. The estimated cutting forces were compared to ground truth measurements obtained from a dynamometer. The model achieved a Pearson correlation coefficient of 0.943, demonstrating that reliable cutting force estimation is achievable using only low-cost vibration sensors.
Tool condition monitoring is one of the key issues in mechanical machining for efficient manufacturing of the parts in several industries. In this study, a tool condition monitoring system for milling was developed using a tri-axial accelerometer, a data acquisition, and signal processing module, and an alexnet as deep learning. Milling experiments were conducted on an aluminum 6061 workpiece. A three-axis accelerometer was installed on a spindle to collect vibration signals in three directions during milling. The image using time-domain, CWT, STFT represented the change in tool wear of X, Y axis directions. Alexnet was modified to learn images of the two directional vibration signals, to predict the tool condition. From an analysis of the results of learning based on the experimental data, the performance of the monitoring system could be significantly improved by the suitable selection of the data image method.
Citations
Citations to this article as recorded by
Anomaly Detection Method in Railway Using Signal Processing and Deep Learning Jaeseok Shim, Jeongseo Koo, Yongwoon Park, Jaehoon Kim Applied Sciences.2022; 12(24): 12901. CrossRef
Comparative Analysis and Monitoring of Tool Wear in Carbon Fiber Reinforced Plastics Drilling Kyeong Bin Kim, Jang Hoon Seo, Tae-Gon Kim, Byung-Guk Jun, Young Hun Jeong Journal of the Korean Society for Precision Engineering.2020; 37(11): 813. CrossRef