Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Tool condition monitoring"

Article category

Keywords

Publication year

Authors

Funded articles

"Tool condition monitoring"

Regular

Autoencoder-based Milling Cutting Force Monitoring by Spindle Vibration Signal Detection
Je-Doo Ryu, Jung-Min Lee, Sung-Ryul Kim, Min Cheol Lee
J. Korean Soc. Precis. Eng. 2026;43(1):47-54.
Published online January 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.051
In machining operations, dynamometers are typically used to directly measure the forces acting on cutting tools. However, their high cost and complex setup restrict their use to laboratory environments, making them unsuitable for real-time monitoring in general production settings. To overcome this limitation, this study proposes an autoencoder-based learning model for estimating cutting forces using only spindle vibration signals acquired during milling. The model features a deep neural network (DNN) that takes processed spindle vibration signals as input and predicts latent features derived from cutting force signals through an autoencoder. These predicted latent features are then fed into a pretrained decoder to reconstruct the corresponding cutting force signals. To enhance the model's accuracy and robustness, the raw vibration signals sampled at 20 kHz were filtered with a bandpass filter that spans the effective frequency range of 20–2500 Hz, effectively removing irrelevant noise. For validation, an accelerometer was mounted on the spindle head of a milling machine, and vibration data were collected during cutting. The estimated cutting forces were compared to ground truth measurements obtained from a dynamometer. The model achieved a Pearson correlation coefficient of 0.943, demonstrating that reliable cutting force estimation is achievable using only low-cost vibration sensors.
  • 736 View
  • 21 Download
Article
Tool Condition Monitoring Using Deep Learning in Machining Process
Byeonghui Park, Yoonjae Lee, Changwoo Lee
J. Korean Soc. Precis. Eng. 2020;37(6):415-420.
Published online June 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.040
Tool condition monitoring is one of the key issues in mechanical machining for efficient manufacturing of the parts in several industries. In this study, a tool condition monitoring system for milling was developed using a tri-axial accelerometer, a data acquisition, and signal processing module, and an alexnet as deep learning. Milling experiments were conducted on an aluminum 6061 workpiece. A three-axis accelerometer was installed on a spindle to collect vibration signals in three directions during milling. The image using time-domain, CWT, STFT represented the change in tool wear of X, Y axis directions. Alexnet was modified to learn images of the two directional vibration signals, to predict the tool condition. From an analysis of the results of learning based on the experimental data, the performance of the monitoring system could be significantly improved by the suitable selection of the data image method.

Citations

Citations to this article as recorded by  Crossref logo
  • Anomaly Detection Method in Railway Using Signal Processing and Deep Learning
    Jaeseok Shim, Jeongseo Koo, Yongwoon Park, Jaehoon Kim
    Applied Sciences.2022; 12(24): 12901.     CrossRef
  • Comparative Analysis and Monitoring of Tool Wear in Carbon Fiber Reinforced Plastics Drilling
    Kyeong Bin Kim, Jang Hoon Seo, Tae-Gon Kim, Byung-Guk Jun, Young Hun Jeong
    Journal of the Korean Society for Precision Engineering.2020; 37(11): 813.     CrossRef
  • 48 View
  • 2 Download
  • Crossref