Generally welding is one of the most important processes to have a strong influence on the quality and productivity from a manufacture-based industry such as shipbuilding, automotive and machinery. The GMA(Gas Metal Arc) welding process involves large number of interdependent welding parameters which may affect product quality, productivity and cost effectiveness. To solve such problems, mathematical models are required to select the welding parameters for GMA welding process. In this study, the GMA welding process was studied using the information generated during the welding. The statistical analysis of a generalized regression approach was conducted by the following three methods: Firstly using the mathematical model (linear regression, 2nd regression); Secondly GA(Genetic Algorithm) with intelligent models; And finally using response surface analysis of models to develop the relationships between welding parameters and bead width as welding quality.