Due to the extremely short interaction time (< 10 × 10-12sec) between laser pulse and material, which enables the minimization of heat affection, ultrafast laser micro-machining has rapidly widened its applications. In this paper, the characteristics of ultrafast laser micro-machining have been reviewed and experimentally demonstrated in laser drilling of silicon wafer and in laser cutting of rigid PCB.
Due to the rapid spread of mobile handheld devices, industrial demands for micro-scale holes with a diameter of even smaller than 100㎛ in sapphire/silicon wafers have been increasing. Holes in sapphire wafers are for heat dissipation from LEDs; and those in silicon wafers for interlayer communication in three-dimensional integrated circuit (IC). We have developed a sapphire wafer driller equipped with a 532㎚ laser in which a cooling chuck is employed to minimize local heat accumulation in wafer. Through the optimization of process parameters (pulse energy, repetition rate, number of pulses), quality holes with a diameter of 30㎛ and a depth of 100㎛ can be drilled at a rate of 30holes/sec. We also have developed a silicon wafer driller equipped with a 355㎚ laser. It is able to drill quality through-holes of 15μm in diameter and 150㎛ in depth at a rate of 100holes/sec.
High speed cutting processes of rigid flexible printed circuit board by making use of high power UV laser with nano-second pulse width have been proposed and investigated experimentally. Also robust laser cutting system has been designed and developed in order to obtain a good cutting quality of rigid and flexible PCB with multi-layers (2-6 layers). Power controller module developed for ourselves is adapted to control the laser output power in the range less than 1%. The systems show the good performance of cutting speed, cutting width and cutting accuracy, respectively. Especially we have confirmed that the short circuit problem due to the carbonized contamination occurred in cross section of multi-layers by thermal effect of high power laser has been improved largely by using multi-pass cutting process with low power and high speed.
The micro fabrication on the mold material using picosecond laser ablation processing has been studied. We used the two kind of system with picosecond laser. First one is two mirror type scanner and telecentric f-theta lens. Second one is X-Y stage and objective lens. By using these system, the 100㎛ size chess patterning and 2㎛ size patterning was fabricated. Especially 2㎛ size patterning on the mold material can be used as the decorative rainbow color logo for industrial field. In this paper, it is proved the picosecond laser is effective tool for the laser ablation processing.
We have investigated fs-laser ablation as well as optoperforation threshold of PDMS (Polydimethylsiloxane) thin lid cover on μ-channel with changing the flow medium from water to hemoglobin. The ablation threshold is found to be independent of both PDMS thin film thickness and flow medium, but the optoperforation threshold is dependent on the films thickness. The observation that the ablation process is well described with simple two-temperature model supposed that the cover lid PDMS of μ-channel be processed with minimized thermal effects by fs-laser with low laser fluence.
In order to achieve and maintain dimensional accuracy in laser micro-machining, dominant parameters such as laser power and laser focus position need to be monitored and controlled real time. Also, in order to selectively machine multi-layered materials, the material being presently machined need to be recognized. This paper presents an auto-focusing (AF) module to keep laser focus on a large-area surface; a real-time laser power stabilizing module based on optical attenuation; and a laser-induced breakdown spectroscopy (LIBS) module. With these monitoring modules, position error in laser focus on a 4” silicon wafer was kept below 4㎛, initially 51㎛, and laser power stability of a UV laser source was improved from 1.6% to 0.3%. Also, the material transition from polyimide to copper in machining of FCCL (flexible copper clad laminate) was successfully observed.
The Purpose of this paper is to weld a rapid palatal expander using a continuous wave Nd:YAG laser. The rapid palatal expander has become a useful treatment method for severe maxillary transverse deficiencies and posterior crossbites. Rapid maxillary expansion is a well-established method to correct transverse maxillary deficiency and arch length discrepancy. The major process parameters studied in the present laser welding experiment were the positions of focus, laser power and travel speed of laser beam. We measured the fusion zone size and its shape using an optical microscope for the observation of cross-sectional area and tension stress of a rapid palatal expander welded. Through the experimental investigation, the optimum speeds and power of laser without deficiencies of weld cross-sectional area were obtained.
In this paper, two kind of free-form progressive addition lenses (PALs) were designed with Zernike polynomial surface and anatomically accurate finite presbyopic schematic eyes which have aspheric cornea, aspheric GRIN crystalline lens, aspheric retina, and Gaussian apodization factor. Geometrical and diffraction MTFs were used for the optimization process in sequence. 5th orders of Zernike polynomials were used for the evaluation of progression zones of the two examples. The target MTF was set as 0.22 at 100 lp/㎜ which satisfies the standard visual resolution. These examples were fabricated with a CNC diamond turning machine controlled by slow tool servo (STS). After polishing process, the wavefront aberrations were measured with a laser interferometer on the ten test points across the progression zones and then compared with three current commercially available PALs on the optical performance. Astigmatic aberrations of the examples are very lower than the three selected PALs and have more increased stabilized progressive intermediate zones and near zones. It is expected to give better clear and comfortable distance, intermediate and near visions than other conventional PALs and to improve the adaptability of presbyopic patients to PALs.
Lookup-Table (LUT) based fuzzy controller for obstacle avoidance enhances operations faster in multiple obstacles environment. An LUT based fuzzy controller with Positive/Negative (P/N) fuzzy rule base consisting of 18 rules was introduced in our paper¹ and this paper shows a 50-rule P/N fuzzy controller for enhancing performance in obstacle avoidance. As a rule, the more rules are necessary, the more buffers are required. This paper suggests LUT sharing method in order to reduce LUT buffer size without significant degradation of performance. The LUT sharing method makes buffer size independent of the whole fuzzy system’s complexity. Simulation using MSRDS(MicroSoft Robotics Developer Studio) evaluates the proposed method, and in order to investigate its performance, experiments are carried out to Pioneer P3-DX in the LabVIEW environment. The simulation and experiments show little difference between the fully valued LUTbased method and the LUT sharing method in operation times. On the other hand, LUT sharing method reduced its buffer size by about 95% of full valued LUT-based design.
This study proposed an auto focusing method for a multi-focus image in assembling lens modules in digital camera phones. A camera module in a camera phone is composed of a lens barrel, an IR glass, a lens mount, a PCB board and aspheric lenses. Alignment among the components is one of the important factors in product quality. Auto-focus is essential to adjust image quality of an IR glass in a lens holder, but there are two focal points in the captured image due to thickness of IR glass. So, sharpness, probability and a scale factor are defined to find desired focus from a multi-focus image. The sharpness is defined as clarity of an image. Probability and a scale factors are calculated using pattern matching with a registered image. The presented algorithm was applied to a lens assembly machine which has 5 axes, two vacuum chucks and an inspection system. The desired focus can be determined on the local maximum of the sharpness, the probability and the scale factor in the experiment.
The remanufacturing system is a series of industrial process in which worn-out products are restored to like-new condition. The remanufacturing system is differ from the repair system not only process characteristics but also product characteristics. So, it is required to design another model for the remanufacturing system which is distinct from the repair system and also performance index is required for the remanufacturing system. Therefore, in this paper we suggest the availability model for remanufacturing system by using Markov Process. This model represents each of the states of the remanufacturing system. Also performance indexes of remanufacturing system are introduced. Performance indexes are consisting of part reuse frequency and time, part disposal frequency and time. As a result, we can have a choice and control the proper part and offer useful information during the remanufacturing by using these availability model and performance indexes.
The tilting index table has attached to CNC machining center with 3axes, it can be improvement of its performance and its machining efficiency. The tilting index table is a key unit in order to manufacture some non-rotational and 3-dimensional parts, using the conventional machining center. In this study, structural analysis is carried out by FEM simulation using the commercial software ANSYS Workbench 11 to develop tilting index table using direct drive motor. The shape of the tilting index table obtained from the optimization was analyzed and compared with the initial model. Also, the initial model was modified based on the optimization model and the result was verified to have the acceptable improvement.
Composite materials have a higher specific strength and modulus than traditional metallic materials. Additionally, these materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. These, however, are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. Impact test was performed using drop weight impact tester. And residual strength behavior by impact was evaluated using the caprino model. Also we evaluated behavior of residual strength by change of mass and size of impactor. Examined change of residual strength by impact energy change through this research and consider impactor diameter in caprino model.
Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.
It is important to make a mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In finite element analysis model updating is appropriate as the design parameter is used to analyze the dynamic system. The errors can be contained from the physical parameters and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. In this paper, model updating algorithm is developed using frequency difference between experiment and calculation. Modal frequencies are obtained by experiment and finite element analysis for beams with various cross section and shapes which have added masses and holes in the middle. For plates with and without groove, experiment and analyses are carried out by applying free boundary conditions as well. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies in case that both matrices are updated. An improved analytical model is obtained by changing model parameters such that the discrepancy between test and finite element frequencies is minimized. For beam and plate models updating of mass and stiffness matrices can improve the dynamical behavior of the model by acting on the physical parameters such as masses and stiffness.