In this paper, theoretical and experimental studies were conducted on the cooling performance of a microchannel heat dissipation device with a manifold layer added. By adding 500 μm wide microchannels and manifold flow fields, the rheological properties of the cooling fluid were enhanced to improve the heat transfer performance. The size of the microchannel used for cooling was 40 × 40 × 5 mm, and was evaluated under a heat flux of 12.5-43.75 W/㎠ and a flow rate of 0.3-1.1 L /min conditions. As a result of the experiment, in the case of a microchannel heat sink of 500 μm compared to the existing heat sink, cooling was successfully performed under a heat flux condition of about four times
Citations
Citations to this article as recorded by
Thermal Design of Heatsink for M.2 NVMe SSD Reliability Chan Ho Kim, Jinsung Rho, Joong Bae Kim Journal of the Korean Society for Precision Engineering.2023; 40(5): 389. CrossRef
The purpose of this study is to propose a better contact surface pattern of a heat radiating block in a progressive GMP (Glass Molding Process) heating assembly. In this study, a simulation model based on FEM was developed to perform a thermal analysis for the heating assembly. It was verified by comparing experimental results. The temperature distribution on the heating block surface and heating energy consumption was analyzed with the change of contact surface pattern and area of a heat radiating block. The considered pattern on the contact surface was cross (+) and straight (-) shape. The contact area ratio was changed from 16 to 100%. The simulation results show that the heating energy consumption increased to reach a target temperature with the increase of contact area ratio. The straight-shaped patterns on a heat radiating block presented more uniform temperature distribution on the mold heating surface than the cross shaped surface, whereas it resulted in a slightly higher energy consumption of up to 9%. This study shows that the contact surface pattern on a heat dissipating block can control the temperature distribution on the mold heating surface.
Citations
Citations to this article as recorded by
A Study on Temperature and Stress Distribution in a Lens under Multi-Stage Cooling Conditions in Progressive Glass Molding Processes Ji Hyun Hong, Jeong Taek Hong, Dong Yean Jung, Young Bok Kim, Keun Park, Chang Yong Park Journal of the Korean Society for Precision Engineering.2025; 42(2): 157. CrossRef
A Study on Numerical Analysis for Determination of Glass Molding Process Conditions for Glass Lenses Jaehun Choi, Sajan Tamang, Heesung Park Journal of the Korean Society for Precision Engineering.2024; 41(3): 207. CrossRef
This research is to investigate the cooling performance of the motor in the electric vehicle depending on the cooling channel fin. The research focused on numerical study of the temperature of coil and cooling channel and the heat transfer coefficients to find a optimum design shape with high cooling performance at three different cases. To compare the convective cooling performance of the three cooling channels, local position (R) are displayed on the surface of the coils with a large temperature deviation. This research was performed on forced convection and was numerically analyzed by FLUENT V20.2. Owing to forced convection by the same mass flow, the average cooling channel velocity in Case 3 was 17.4% faster than Case 1 and 8.6% faster than Case 2. Out of the three cases, the highest heat transfer coefficient was found in the cooling channel and coil of Case 3, which had two cooling fins. The coil maximum temperature of Case 3 with 2 cooling fins was 4.7% lower than Case 1 without cooling fins and 1.7% lower than Case 2 with 1 cooling fin. Ultimately, Case 3 with two cooling fins provided the best cooling performance and improved driving motor performance for motor durability.
Citations
Citations to this article as recorded by
Thermal management strategies and power ratings of electric vehicle motors Jaya Antony Perinba Selvin Raj, Lazarus Godson Asirvatham, Appadurai Anitha Angeline, Stephen Manova, Bairi Levi Rakshith, Jefferson Raja Bose, Omid Mahian, Somchai Wongwises Renewable and Sustainable Energy Reviews.2024; 189: 113874. CrossRef
Power electronic systems have been widely applied in both industrial and domestic applications in the modern society for controlling and converting electrical energy. Due to their characteristics, such as excellent performance, low cost, high reliability, and low weight and size, power semiconductors, including insulated-gate bipolar transistors (IGBTs) dominate the market of power converters. The technical progress and development trend of IGBT for industrial applications are primarily driven by five aspects influenced by each other to an extent, including operating temperature, efficiency, dimension, reliability, and cost. Liquid cooling systems surpass the air cooling systems by supplying heat transfer coefficient, which is several orders of magnitude higher. Thus, using liquid cooling system enables much higher power densities of power modules and more compact converter solutions.
Citations
Citations to this article as recorded by
Experimental Study on Heat Transfer Performance of Microchannel Applied with Manifold Jungmyung Kim, Hoyong Jang, Heesung Park Journal of the Korean Society for Precision Engineering.2022; 39(12): 923. CrossRef
The high voltage direct current (HVDC) device has been used to transmit electrical power with an advanced technology of semiconductors. The sustainable energy generation technologies of solar power and windmills are demanding that the HVDCs have high performance and reliability. In this regard, the cooling performance of the HVDC becomes a significant research topic because the temperature increase affects the operation of the device. The evaluation system to assess the cooling performance has been developed and is proposed in this paper. The experimental apparatus is presented in detail. Our experiments have shown the accuracy of flow rates, pressure drops, and the temperatures in the desired measurement points. We have successfully developed an evaluation system of the cooling performance of the HVDC device which has 2.48 kW of heat dissipation.
By patterning finely with a laser with a thickness of 100 μm or less such as ABS and forming an electronic circuit through plating, a high-density flexible PCB applicable to wearable and mobile devices can be realized. ABS films with a thickness of 60, 90, and 120 μm were prepared, and a crater measuring 100 μm or less was formed by irradiating a fiber laser with a wavelength of 1064 nm with a single pulse. The size of the craters is affected by the intensity of laser irradiation and the thickness of the film, and the heat dissipation layer reduces the change in size caused by the difference in the thickness of the film. For films with a thickness of 60 μm, it has been found that small craters of more than 10% can be obtained due to the heat dissipation layer. Thermal analysis showed in the ABS film without the heat dissipation layer, the maximum temperature increased to 373oC, but decreased to 261℃ in the ABS film with the heat dissipation layer. With a decrease in the thickness of the film, the heat dissipation layer further reduces the pattern by laser irradiation.
This study is to investigate the cooling performance of the secondary battery in electric vehicles according to three different gaps between battery cells. To accomplish the convective cooling performance of the battery surface with three different gaps, selected local positions (X, Y, Z) for various temperature distributions were marked on the gap surface contacting the cell surface. The cooling performance of the gap of 0.5 mm was compared with the gaps of 5 mm, and 1 mm. Normalized local Nusselt number of the cooling area at the normalized width position indicated that the gap of 0.5 mm was on average 26.99% lower than that of 5 mm and 0.49% lower than that of 1 mm. At the normalized height, the gap of 0.5 mm was on average 12.12% higher than that of 1 mm. Because of the vortex at the outlet area, cooling performance at the gap of 0.5 mm was on average 13.19% higher than that of 5 mm and 0.79% higher than that of 1 mm at normalized thickness. Ultimately, the best cooling performance existed at the gap of 5 mm, but the gap of 0.5 mm was best for improving space efficiency, energy storage capacity, and vehicle-driving durability.
Citations
Citations to this article as recorded by
A Study on Cooling Performance Augmentation of Water-Cooling and Optimization Design Utilizing Carbon Material in Electric Vehicle Secondary Battery Seung Bong Hyun, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(7): 519. CrossRef
Optimization Design for Augmentation of Cooling Performance Utilizing Leading-Edge Materials in Electric Vehicle Battery Cells Byeong Yeop Kim, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(7): 529. CrossRef
An air cooling system using an axial flow fan is generally applied in an electronic cabinet on shipboard. However, cases that apply a water cooling system or a mixture of water cooling and an air cooling system are gradually increased by applying the high-performance SBC (Single Board Computer) or DSP (Digital Signal Process), which has a high heating value. In this study, a structure borne noise reduction design for an electronic cabinet that applied a mixture of air and water cooling system was performed. First, the cooling system design was performed using a numerical analysis to secure a thermal stability, and then an electronic cabinet was produced. Next, considering the cooling performance, the reduction design for structure borne noise that causes an underwater radiated noise was performed using the experimental approach. The electronic cabinet, which has a thermal stability and meets the structure borne noise specifications, was finally developed.