Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

17
results for

"소형"

Article category

Keywords

Publication year

Authors

"소형"

REGULARs

Dynamic Characteristic-based Driving Performance Analysis of a Semi-active Suspension Wheel Module for Small Mobile Robots
Seoyeon Park, Sungjae Kim, Juhyun Pyo, Murim Kim, Jin-Ho Suh
J. Korean Soc. Precis. Eng. 2025;42(11):919-926.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.069

This study details the development of a semi-active suspension wheel module for small mobile robots and assesses its dynamic characteristics under various driving conditions through simulation. The wheel module features a low-degree-of-freedom mechanical design and includes a semi-active damper to improve adaptability to different environments. To validate the simulation model, a prototype robot equipped with the wheel module was created, and obstacle-crossing experiments were conducted to measure vertical acceleration responses. The model was then refined based on these experimental results. By employing design of experiments and optimization techniques, the effective range of damping coefficients was estimated. Additionally, simulations were carried out at different speeds, payloads, and obstacle heights to identify optimal damping values and examine their trends. The results indicate that the proposed module significantly enhances driving stability and can serve as a foundation for future control strategies in robotic mobility systems.

  • 97 View
  • 6 Download
Tensile Behavior of 3D Printed Specimens by Small Punch Test
Bum Joon Kim
J. Korean Soc. Precis. Eng. 2025;42(10):879-884.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.121

The purpose of this study is to evaluate the deformation behavior of 3D printed specimens using the small punch tensile test method. Traditional tensile tests for assessing mechanical properties require a significant amount of material to produce uniaxial tensile specimens. In contrast, the small punch test method only requires 10 x 10 x 0.5 mm (width x length x thickness) thin plate specimens, providing a substantial economic advantage in specimen sampling and production. This method is particularly beneficial when it is impossible to produce specimens of the same size as uniaxial specimens, as it allows tensile testing with just the minimum sample required. In this study, we utilized fused deposition modeling 3D printing and considered various 3D printing parameters, such as layer height and volume fraction, while manufacturing the specimens. We then compared and analyzed the effects of these variables on tensile strength as measured by the small punch tensile test. Furthermore, we focused on investigating the applicability of this method to the deformation behavior of 3D printed specimens. We also examined the impact of laminating conditions, including layer height, printing speed, and laminating direction, on the failure modes observed after the small punch tensile test.

  • 65 View
  • 3 Download
Articles
Autonomous Drone Charging System Using Pose Alignment Mechanism
Da Yeong Han, Yu Jin Ho, Jae Hwan Bong
J. Korean Soc. Precis. Eng. 2025;42(3):223-229.
Published online March 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.123
Drones are increasingly used in various fields such as agriculture, logistics, and disaster response due to their agility and versatility. In indoor plant factories, small drones are used to monitor crop conditions and collect environmental data. However, small drones require frequent recharging due to their limited battery capacity, making autonomous charging systems essential for uninterrupted operation of drones. This study proposes an autonomous charging station designed for small drones in indoor plant factories. The system employs a wired charging mechanism to enhance charging efficiency, and a 3-degree-of-freedom (DOF) pose alignment system, utilizing an XY plotter and turntable, to correct drone landing errors. The alignment system ensures that drones, landing with random positions and orientations, are automatically adjusted to the correct position for charging. Experiments demonstrated that the charging station successfully aligned and charged drones with a 93% success rate on the first attempt. Even in cases of failure, the system automatically retried until a 100% success rate was achieved. This autonomous drone charging system has the potential to significantly enhance operational efficiency in indoor plant factories and can be adapted for various drone models in future applications.
  • 70 View
  • 4 Download
Study on Miniaturization and Lightweight Method of Electric Thruster Power and Gas Supply Device for Micro Satellite
Jin Young Park
J. Korean Soc. Precis. Eng. 2024;41(11):889-896.
Published online November 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.090
Recent advancements in science and technology have enabled even microsatellites to perform various high-level tasks. As the range of missions that satellites undertake expands, even microsatellites now require thrust systems for orbit adjustment and collision avoidance. In such satellite applications, sizes and weights of all electrical components and propulsion systems are restricted, emphasizing the importance of miniaturization and weight reduction. Research is ongoing in various methods to address these needs. To solve these challenges, this study proposed a design model for miniaturizing and lightening both Anode Power Module (APM) and gas supply system. The APM utilizing an LLC resonant converter achieved an efficiency of up to 86%. An evaluation of flow control characteristics of the proposed gas supply device showed that the flow control error was less than 2.3%, indicating effective results. A thermal mass flow sensor was developed to measure the flow of gas. Temperature characteristics derived from experiments were analyzed to assess their applicability to electric thruster systems for satellites.
  • 42 View
  • 0 Download
Satellite Optical System Manufacturing Technology Using 3D Printing Technology
Seong Hyeon Park, Hwan Ho Maeng, Jin Yong Heo, Joong Kyu Ham, Jong Gyun Kang, Geon Hee Kim
J. Korean Soc. Precis. Eng. 2024;41(2):117-122.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.131
  • 47 View
  • 0 Download
Frequency Domain Identification and Model-based Disturbance Observer for a Mini Drone
Kyu-Hwan Chung, Hyeong-Joon Ahn
J. Korean Soc. Precis. Eng. 2023;40(5):383-388.
Published online May 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.134
Drone is an innovative industry that can combine the application of various technologies in the fourth industrial era, such as big data, artificial intelligence, and ICT. Although the synergy effects of these technologies will be great in various industrial ecosystems, drones are vulnerable to gusts such as "building wind" or "valley wind". Herein, the frequency domain of a mini drone was identified and a model-based disturbance observer (DOBs) was applied to implement the drone robust resistance against gusts. The frequency response of the Parrot Mambo or mini drone was measured with multi-sine excitation and the system dynamic parameters were identified. Based on the identified model, DOBs were designed and applied to the drone’s altitude, position, and yaw control. The effectiveness of the DOBs was verified with a sinusoidal disturbance. With the model-based DOB, 84.5% of the drone altitude responses, 50.7% of x responses, 52.1% of y responses, and 79.7% of yaw responses against sinusoidal disturbances were reduced. Flight responses were measured against wind disturbances with changing speed and direction. With the model-based DOBs, the drone"s altitude decreased by 87.7%, the x position by 53.0%, the y position by 60.6%, and the yaw angle by 56.2%.
  • 41 View
  • 0 Download
Assessment of Creep Behavior of Inconel 617 Alloy Weldment by Small Punch Test
Bum Joon Kim
J. Korean Soc. Precis. Eng. 2023;40(3):203-210.
Published online March 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.008
In this research, the small punch (SP) test was applied to examine the local creep characteristics of a narrow gap weldment. To find the local creep property, an Ni-based 617 alloy and its narrow gap weldment. which is one of candidates for advanced fossil power plants, were employed. Thin square specimens were machined at three different locations: weld metal, base metal, and HAZ near the base metal from the Inconel 617 alloy narrow gap weldment. The results of the SPC test were evaluated. The microstructure of narrow gap weldment was observed by scanning electron microscopy and optical microscopy to investigate the effect of the microstructure on the creep properties of the weld zone. The creep rupture part of the weldment was observed by scanning electron microscopy. Finally, four different creep characteristics of the narrow gap weldment were obtained by the SPC test with good validity.
  • 37 View
  • 0 Download
Design of High Performance Manipulator for Small EOD Robot System
Kyung Sik Jo, Dong Hyun Lee, Gab Soon Kim
J. Korean Soc. Precis. Eng. 2019;36(12):1125-1133.
Published online December 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.12.1125
In this paper, we designed and manufactured a new manipulator (less than 15 kg) to make the total weight of SCOBOT-200 (EOD robot: its platform weight is 35 kg) commercialized by FIRSTEC Co., Ltd. Link1 and Link2 of the manipulator were designed and fabricated using CFRP (Carbon Fiber Reinforced Plastics) material, and the other components were made of AL6061 material. The fabricated manipulator has 5-DOF, and the opening width of the gripper is more than 1520 mm. As a result of the characteristic test, the weight of manipulator is 14.5 kg, the length of the manipulator is 1500 mm, the payload when the manipulator extended is 8 kg, when folded is 20 kg. Thus, the manipulator manufactured can be used as a manipulator for a small EOD (Explosive Ordnance Disposal) robot.

Citations

Citations to this article as recorded by  Crossref logo
  • Research on the application of intelligent robots in explosive crime scenes
    Junwei Guo
    International Journal of System Assurance Engineering and Management.2023; 14(2): 626.     CrossRef
  • Study on Output Characteristics of Printed Flexible Tactile Sensors Connected to Brass Terminals
    Jindong Kim, Yonghwan Bae, Inhwan Lee, Hochan Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(4): 65.     CrossRef
  • 59 View
  • 0 Download
  • Crossref
A Study on the Strength Characteristic of Compact Tension Specimen due to Internal Holes and Material
Jung-Ho Lee, Sung-Ki Lyu, Jae-Ung Cho
J. Korean Soc. Precis. Eng. 2019;36(7):623-629.
Published online July 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.7.623
Majority of deformation and ruptures as a result of severe deformation of mechanical structures are due to the existence of cracks or cracks generated through specific situations. These cracks causes stress concentration and eventually ruptures under lower load conditions than they are designed to withstand. In this study, simulation tensile analysis was done by designing compact tension specimen models with the number of holes that existed inside and the materials of the test specimens by focusing on the effects of the cracks. The study results from all the analysis (deformations, equivalent stress and strain energy) confirmed that the specimen models having two holes had better strength characteristics than those with only one hole. Additionally, the durability and strength characteristics of specific mechanical structures against the load improved through appropriate arrangement of holes thereby reducing stress generation. As such the results of this study could be utilized as the basic data for future researches on composite materials and sandwich type homogenous materials. Furthermore, the study results can assist in designing more durable products.
  • 44 View
  • 0 Download
Analysis and Validation of a Small Capacity Wind Turbine with a Side Furling System
Dongmyoung Kim, Insu Paek, Jeonghwan Kim
J. Korean Soc. Precis. Eng. 2019;36(5):505-514.
Published online May 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.5.505
In this study, a 10 kW horizontal-axis lift-type wind turbine is analyzed and verified. The three-bladed wind turbine is modeled and analyzed with FAST which is a multi-body dynamics code for a wind turbine. The turbine without any advanced over speed protection except an on/off control was simulated and experimentally verified. In the verification, the field test results were found to be well predicted by the simulation. Also, a side-furling system was proposed for the wind turbine without changing parameters of the current system much. From the dynamic simulation for verification, the furling system was found to work well up to 20 m/s with a modified torque control schedule. Although the proposed furling system could not be verified experimentally in the field, a similar 10 kW wind turbine whose experimental results are available in the literature was used for a verification. It was found from the simulation that the prediction from the simulation with the furling system was close to the experimental results in the literature.

Citations

Citations to this article as recorded by  Crossref logo
  • Development and Validation of Control Algorithm for Variable Speed Fixed Pitch Small Wind Turbine
    Donggeun Jeong, Taesu Jeon, Insu Paek, Deokjin Lim
    Energies.2023; 16(4): 2003.     CrossRef
  • 52 View
  • 0 Download
  • Crossref
Study on Optimal Altitude and Economic, Stability Review of 10 kW Class Horizontal Wind Turbine
Da Han Han, Shin You Kang, Jeong Hwan Kim
J. Korean Soc. Precis. Eng. 2019;36(3):311-317.
Published online March 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.3.311
In this paper, we compare the cost of the structure due to change of weight of the structure according to change of annual power generation and height, calculated by changing wind speed of a 10kW horizontal small wind turbine, Optimum height of the wind turbine was considered. The cost of each model was calculated by changing height of the structure to 12 m, 24 m, 30 m, and 36 m. Wind speed was calculated by the Deacon formula, and annual power generation was calculated based on annual average wind speed at power generation height of each model. Then, economic efficiency was evaluated by comparing cost of the structure with total profit over the lifetime calculated by annual power generation, and a suitable model was selected based on evaluation. Computer analysis was conducted to evaluate structural stability of the selected model.
  • 50 View
  • 0 Download
Review on Microstencil Lithography Technologies
Jin Ho Choi, Hye Jin Choi, Gyu Man Kim
J. Korean Soc. Precis. Eng. 2018;35(11):1043-1054.
Published online November 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.11.1043
We introduce technological development of stencil lithography, for new micro and nano fabricated method as a patterning technique. Stencil lithography has advantages of photoresistless, reusable patterning technique, and large area micro and nano patterning. The principle of stencil lithography is as follows: Materials are deposited through perforated holes on the membrane surface, of stencil in micro and nanoscale. In this paper, the fabrication method and application of three types of stencils, are reviewed according to the material. Solid-state stencils based on silicon, are fabricated by micro-fabrication processing of photolithography and etching. Metal stencils are fabricated by metal etching, electroforming, and laser machining. Polymer stencils are fabricated by molding and casting of polymers, such as PDMS, Hydrogel and Photocrosslinkable polymer, etc. Stencils fabricated from a variety of ways may be applied to nanopatterns, nano-wire patterning, and metal electrode fabrication, and used in metal deposition or etching masks and non-planar surface metal patterning techniques. Stencil lithography is applied in various areas of flexible displays, bio-devices, wearable sensors, etc.

Citations

Citations to this article as recorded by  Crossref logo
  • Single-cell patterning: a new frontier in bioengineering
    R. Gayathri, S. Kar, M. Nagai, F.-G. Tseng, P.S. Mahapatra, T.S. Santra
    Materials Today Chemistry.2022; 26: 101021.     CrossRef
  • 108 View
  • 2 Download
  • Crossref
Evaluation of Structural Stability of Small Wind Turbine Blade by Blade Test and Structural Analysis and Improvement of Blade Design
Youn Gi Choi, Shin You Kang, Jong Il Kim
J. Korean Soc. Precis. Eng. 2018;35(9):893-899.
Published online September 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.9.893
This paper examines the stability of the blades that convert the wind kinetic energy into the mechanical energy among the small wind power-generation systems, and proposes the design improvement for blades with a higher rigidity and a lighter weight than the conventional blades. The composite-specimen tensile test and static-load test are conducted to verify the reliability. To design the lightweight blade with the high stiffness, the displacement and the safety factor of the blade composed of the composite material are calculated from the structural-analysis results, and the optimal dimensional and material designs are performed. The optimal design parameters are selected by the shear-web lamination angle and the lamination thickness. The objective function is selected by the safety factor and the weight. For the optimum material design, the GFRP is converted into the CFRP. In this paper, the structural improvement is performed by optimizing the dimensional and material designs, the blade stiffness and weight are redesigned and compared with those of the designed blades, and the structural stability of the redesigned blades is also examined.

Citations

Citations to this article as recorded by  Crossref logo
  • The Suitability of Substructures of the Offshore Wind Power Complex
    Dae Kyung Kim, Dong Soon Kang, Jong Hak Lim, Young Il Byun, Chul Ki Song
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 299.     CrossRef
  • Evaluation of Structural Integrity for Lifting-and-Lowering-Type Drone Station Using Fluid-Structure Interaction Analysis
    Sang Ho Kim, Jae Youl Lee, Sung-Ho Hong, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh, Young Sik Joung, Se Hoon Jeung
    Journal of the Korean Society for Precision Engineering.2021; 38(11): 841.     CrossRef
  • 55 View
  • 0 Download
  • Crossref
A Study on the Case of Life Cycle Assessment for a Sustainable Design of a Composite Small Craft
Dong Kun Lee, Ki Seok Jung, Dae Kyun Oh, Byeong Il Kim
J. Korean Soc. Precis. Eng. 2017;34(11):835-841.
Published online November 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.11.835
In this study, application study of the life cycle assessment (LCA) is conducted on a composite small craft for sustainable design and production according to ISO 14040-14044 series. Procedure of general LCA is reconstituted to apply to composite small craft, and life cycle inventory (LCI) analysis is conducted on principal structures of composite small craft by developing a process flow diagram for boat building. Also, this study leads LCA results of structures and materials into the environmental impact category such as carbon footprint, water eutrophication, air acidification, and energy consumption. Especially, LCA results about production methodologies that are hand lay-up and vacuum infusion of glass fiber reinforced plastic are quantitatively compared and analyzed.

Citations

Citations to this article as recorded by  Crossref logo
  • Analysis of Life Cycle Assessment (LCA) for Sustainable Basic Design Alternatives for Medium-Sized LNG-DF Propulsion Ship
    Ki Seok Jung, Dong Kun Lee
    Journal of the Society of Naval Architects of Korea.2023; 60(5): 358.     CrossRef
  • A case study for 3D scanning-based quantitative quality control during key stages of composite small craft production
    Dong-Kun Lee, Bon-Yeong Park
    International Journal of Naval Architecture and Ocean Engineering.2023; 15: 100534.     CrossRef
  • A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer
    Dong-Kun Lee, Bon-Yeong Park
    Journal of the Society of Naval Architects of Korea.2021; 58(5): 294.     CrossRef
  • 51 View
  • 0 Download
  • Crossref
Investigation on Acoustic Characteristics of Micro-Speaker Diaphragm according to Corrugation Depth Using Finite Element Analysis
Ho Jin Bae, Hyun Joong Lee, Seong Keol Kim, Keun Park
J. Korean Soc. Precis. Eng. 2017;34(8):569-574.
Published online August 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.8.569
Recent use of mobile phones as a multimedia device has increased the development of micro-speaker modules having high quality and a compact size. Micro-speakers use polymer diaphragms fabricated by the thermoforming process. To improve the sound quality, micro-speaker diaphragms are usually designed to contain a number of micro-corrugations. This study investigated the effects of the corrugation depth on the acoustic characteristics of the diaphragm, using finite element (FE) analysis. Structural FE analysis was performed to investigate the stiffness change according to the corrugation depth. Modal FE analysis was used to compare the change in natural frequencies for each case. Harmonic response analysis further investigated the resulting variation in acoustic power. The effects of the corrugation depth on the acoustic characteristics of the diaphragm were discussed by reviewing all the FE analysis results synthetically.

Citations

Citations to this article as recorded by  Crossref logo
  • Design and Analysis of a Novel Microspeaker with Enhanced Low-Frequency SPL and Size Reduction
    Ki-Hong Park, Zhi-Xiong Jiang, Sang-Moon Hwang
    Applied Sciences.2020; 10(24): 8902.     CrossRef
  • 57 View
  • 0 Download
  • Crossref