This study details the development of a semi-active suspension wheel module for small mobile robots and assesses its dynamic characteristics under various driving conditions through simulation. The wheel module features a low-degree-of-freedom mechanical design and includes a semi-active damper to improve adaptability to different environments. To validate the simulation model, a prototype robot equipped with the wheel module was created, and obstacle-crossing experiments were conducted to measure vertical acceleration responses. The model was then refined based on these experimental results. By employing design of experiments and optimization techniques, the effective range of damping coefficients was estimated. Additionally, simulations were carried out at different speeds, payloads, and obstacle heights to identify optimal damping values and examine their trends. The results indicate that the proposed module significantly enhances driving stability and can serve as a foundation for future control strategies in robotic mobility systems.
ERCP (Endoscopic Retrograde Cholangiopancreatography) is a common procedure used to diagnose and treat biliary and pancreatic diseases. However, the repeated exposure to X-ray radiation during these procedures poses health risks to surgeons. Teleoperation systems can help reduce this exposure, but they face challenges such as the lack of force feedback and differences between the master device's mechanisms and the movements of surgical tools, which can diminish surgical precision. This study aimed to develop a master device with force feedback specifically for teleoperated ERCP guidewire insertion, drawing inspiration from the natural hand movements of surgeons. The device includes a ring-shaped translation control handle and a rotation control handle, both designed to allow unlimited movement, thereby intuitively replicating the operation of the guidewire. A force feedback system was incorporated to enable collision detection and prevent potential injuries during procedures. Experimental results showed that the proposed system enhances control precision, reduces handling inertia, and provides effective force feedback. These advancements ensure safer and more accurate guidewire manipulation, addressing key limitations of existing teleoperation systems. Ultimately, this device not only minimizes radiation exposure for surgeons but also facilitates intuitive and precise teleoperated ERCP procedures.
Citations