Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

80
results for

"ROS"

Article category

Keywords

Publication year

Authors

Funded articles

"ROS"

Regulars

Model-based Hysteresis and Cross-coupling Compensation for Precision Control of Piezoelectric Fast Steering Mirror
Hyo Geon Lee, Jae Woo Jung, Sang Won Jung, Jae Hyun Kim, Seonbin Lim, Youngjin Park, Jaehyun Lim, Kijun Seong, Daehee Lee, Seunggu Kang, No-Cheol Park, Jun Young Yoon
J. Korean Soc. Precis. Eng. 2026;43(2):139-149.
Published online February 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.091
This paper presents model-based hysteresis and cross-coupling compensators designed for precise control of a piezoelectric fast steering mirror (FSM). The hysteresis compensators are developed by inversely modeling the variation in the force constant relative to various excitation voltages, enabling the system to maintain linear response characteristics across a broad range of input amplitudes. The cross-coupling compensator is formulated by creating a decoupling matrix that cancels out coupling effects, generating signals of equal magnitude and opposite phase for each axis. The implementation of these compensators reduces the hysteresis band and magnitude uncertainty in the FSM dynamics by over 89.6% and 74.2%, respectively, while also significantly suppressing cross-coupling effects by more than 85.5%. Furthermore, the performance of the proposed compensators is validated in a closed-loop control system, demonstrating a notable reduction in cross-axis vibrations and improved tracking performance in response to step reference inputs and highfrequency sinusoidal trajectories.
  • 259 View
  • 6 Download
Study on the Reduction of Charge in Electrostatically Charged Particles Using a Neutralizer
Deokhyeong Kim, Sungbin Lee, Geonho Kim, Seonghyun Ko, Heesung Park
J. Korean Soc. Precis. Eng. 2026;43(1):105-111.
Published online January 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.096
This study examines the charge reduction characteristics of charged particles using a neutralizer to prevent accidents from electrostatic discharge and enhance process efficiency. The research measures the number of charges, elimination efficiency, and penetration rate under various voltage polarity conditions with a DC-type bipolar electrostatic eliminator. The results indicate that electrostatic neutralization is most effective under negative high voltage (-HV) conditions, while the mesh penetration rate increases and charge accumulation occurs under positive high voltage (+HV) conditions. Furthermore, partial charge neutralization is observed under both positive and negative high voltage (±HV) conditions due to the sequential emission of positive and negative ions. This study quantifies the mitigation of electrostatic charge using a neutralizer, offering insights for optimizing filtration systems and improving process stability. Future research will refine electrostatic control mechanisms by considering additional parameters such as particle size, material properties, and flow conditions.
  • 427 View
  • 9 Download
Effect of Flash-light Sintering Voltage on the Microstructure and Chemical Properties of Lithium Lanthanum Titanate Thin Films Prepared by Electrostatic Spray Deposition
Sun Min Kim, In Suk Song, Hyo Jun Ahn, Min Ji Kim, Young-Beom Kim
J. Korean Soc. Precis. Eng. 2026;43(1):55-60.
Published online January 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.056
All-solid-state batteries (ASSBs) utilizing non-flammable inorganic electrolytes are gaining significant attention due to safety concerns associated with conventional lithium-ion batteries. Among various oxide electrolytes, lithium lanthanum titanate (LLTO) demonstrates high ionic conductivity at room temperature but is prone to lithium loss at elevated sintering temperatures. In this study, we employed electrostatic spray deposition (ESD) at 250℃, followed by flash light sintering within milliseconds using a xenon lamp. This approach enabled the production of dense and highly crystalline LLTO thin films with minimal lithium evaporation. Scanning electron microscopy (SEM) analysis confirmed reduced porosity at 650V, while X-ray photoelectron spectroscopy (XPS) revealed stable lithium content. Additionally, X-ray diffraction (XRD) indicated the formation of a cubic perovskite structure that is beneficial for ionic transport. This rapid and scalable process shows promise for producing high-quality LLTO electrolytes, thereby enhancing the safety and performance of next-generation ASSBs.
  • 608 View
  • 11 Download
Development of the Fretting Corrosion Test Equipment for the Automotive Electrical Connector
Jeong Hyun Kim, Sang Hoon Lee
J. Korean Soc. Precis. Eng. 2026;43(1):21-28.
Published online January 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.029
Fretting corrosion results from microscopic abrasion of connector contacts and is influenced by environmental conditions in automotive applications. This study designed and fabricated test equipment capable of evaluating fretting corrosion characteristics at low temperatures. A temperature–humidity environmental chamber was used, and a compact test jig box was created to fit inside it. The specimen was positioned outside the box and fully exposed to low temperatures, while the driving components were enclosed inside the box. To ensure their reliable operation, warm air was supplied using vortex tubes, maintaining the internal box temperature above 0oC even when chamber conditions reached −40℃. A hemispherical-tip jig was also produced to enable consistent specimen preparation. Experiments conducted at −40℃ used a constant current–resistance method to measure output signals. The system successfully captured accurate and stable resistance changes corresponding to displacement cycles. These findings indicate that the developed equipment provides stable low-temperature operation and reliable measurement performance. Therefore, the system is expected to support fretting corrosion characterization across a wide range of environments, including low-temperature, high-temperature, and temperature-cycling conditions.
  • 812 View
  • 27 Download
Study on Fatigue Life Prediction of Crossed Roller Bearings
Gilbert Rivera, Dong-Hyeok Kim, Dong Uk Kim, Seong-Wook Hong
J. Korean Soc. Precis. Eng. 2025;42(12):1088-1098.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.097
This paper presents a method for estimating the fatigue life of crossed roller bearings (XRBs). XRBs feature a single row of rollers arranged alternately at right angles, making them ideal for applications that require high precision and a compact design. In rolling-element bearings, fatigue life is a crucial design parameter for ensuring long-term reliability and performance. However, existing fatigue life estimation models for XRBs in the literature are limited to basic rating life, with no models available for reference rating life. To address this gap, we developed a comprehensive fatigue life prediction model specifically for XRBs. We formulated a corresponding dynamic load rating to align with the values provided by bearing manufacturers and calibrated an unknown adjustment factor for XRBs using a commercial program. Additionally, a parametric study was conducted to investigate the impact of varying diametral clearance, external loads, roller dimensions, and roller profile parameters on the fatigue life of XRBs.
  • 200 View
  • 14 Download

Specials

A Review of in Operando Measurements of Local Temperature for Lithium-ion Batteries
Soyoung Park, Woosung Park
J. Korean Soc. Precis. Eng. 2025;42(12):1021-1035.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00024
Sensing the internal temperature of lithium-ion batteries is particularly useful for reliable battery operation as both electrochemistry and mass transport are dictated by local temperature. In this article, we review in operando techniques to monitor the internal temperature of lithium-ion batteries during charging and discharging. We categorize existing techniques into two groups: invasive and non-invasive approaches. Invasive techniques include optical fibers, thermocouples, and resistance temperature detectors as a thermometer. Non-invasive methods cover the temperature estimation techniques, namely electrochemical impedance spectroscopy as well as X-ray thermometry. For both approaches, we review working principle of thermometry, pros and cons of each thermometry, and recent studies to tackle relevant technical challenges. This review provides useful information for internal temperature measurements, offering chances for thermally reliable battery operation.
  • 169 View
  • 10 Download
Electrochemical Evaluation of PrOx Capping Layer in LT-SOFCs via Sputtering Process
Ji Woong Jeon, Geon Hyeop Kim, Hyeon Min Lee, Jun Geon Park, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):1003-1010.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00014
Solid Oxide Fuel Cells (SOFCs) are energy conversion devices known for their significantly higher power density compared to other fuel cell types. However, their high operating temperatures pose challenges related to thermal stability. To address this, research is focusing on Low-Temperature SOFCs (LT-SOFCs), which function at lower temperatures and exhibit enhanced electrochemical performance. While various electrode materials are utilized in SOFCs, platinum (Pt) stands out for its excellent electronic conductivity and catalytic activity. Unfortunately, at the operating temperatures of SOFCs, Pt tends to agglomerate, leading to a rapid reduction in the triple phase boundary (TPB) and a subsequent decline in electrochemical reactions. In this study, LT-SOFCs were fabricated with a Praseodymium Oxide (PrOx) capping layer applied to a porous Pt cathode using sputtering, with various thicknesses achieved by adjusting the deposition time. The electrochemical performance of the LT-SOFCs was measured at 500oC. Additionally, the degradation behavior of the LT-SOFCs was assessed by applying a constant voltage of 0.5 V for 48 hours. Scanning Electron Microscopy (SEM) analysis was also conducted on the PrOx capping layer thin films under the same operating conditions.
  • 305 View
  • 16 Download
Parametric Studies of Ionomer Content in PEMFC MEA with Different Humidity
Byung Gyu Kang, Hyeon Min Lee, Ye Rim Kwon, Sun Ki Kwon, Ki Won Hong, Seoung Jai Bai, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):975-980.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00006
The ionomer content in the catalyst layer is a crucial design factor that affects the performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the optimal ionomer content can vary based on the surrounding humidity levels. This study systematically evaluated the influence of the ionomer-to-carbon (I/C) ratio (0.00, 0.55, and 0.91) on PEMFC performance under fully humidified (RH 100%) and low-humidity (RH 25%) conditions. Membrane-electrode assemblies (MEAs) were fabricated using a spray coating technique, and their electrochemical properties were analyzed through polarization curves and electrochemical impedance spectroscopy (EIS). Under RH 100%, the MEA with an I/C ratio of 0.55 achieved the highest peak power density of 519.8 mW/cm2, indicating a successful balance between proton conductivity and gas transport. Conversely, under RH 25%, the best performance of 203.9 mW/cm2 was observed at an I/C ratio of 0.91. This shift is attributed to improved water retention at higher ionomer content, which reduced membrane dehydration and lowered both ohmic and Faradaic resistances. These findings highlight the dual role of the ionomer in facilitating proton transport and managing water balance, emphasizing the necessity of optimizing the I/C ratio according to operating conditions for stable and high-performing PEMFC operation.
  • 636 View
  • 38 Download

REGULARs

Tape-casting Process Electrochemical Characteristic Test for Fabrication of LST-GDC for Anode Supported SOFCs
Min Ji Kim, Chunghyun Kim, Young-Beom Kim
J. Korean Soc. Precis. Eng. 2025;42(11):937-942.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.073

In this study, we developed a composite anode support composed of La-doped SrTiO3 (LST) and Gd-doped CeO2 (GDC) using a tape casting process for solid oxide fuel cells (SOFCs). By adjusting the pore former content in the slurry, we constructed a bilayered structure consisting of a porous anode support layer (ASL) and a dense anode functional layer (AFL) with the same material composition. The number of tape-cast sheets was controlled to tailor the overall thickness, and lamination followed by co-sintering at 1250oC resulted in a mechanically robust bilayer. We characterized the microstructural evolution concerning sintering temperature and pore former content using SEM, while XRD confirmed the phase stability of LST and GDC. The measured electrical conductivity at 750oC ensured sufficient electron transport. To enhance interfacial adhesion and suppress secondary phase formation, we introduced a GDC buffer layer and a pre-sintering treatment prior to electrolyte deposition. A full cell with a YSZ electrolyte and LSCF cathode achieved a stable open circuit voltage of approximately 0.7 V and demonstrated continuous operation at 750oC. These findings highlight the suitability of LST-GDC composite anodes as thermochemically stable supports, potentially enabling direct hydrocarbon utilization in intermediate-temperature SOFCs.

  • 82 View
  • 4 Download
Electrochemical Impedance Analyses of ePTFE-reinforced Polymer Electrolyte Membrane-based PEMFC with Varying Thickness and Relative Humidity
Gyutae Park, Subin Jeong, Youngjae Cho, Junseo Youn, Jiwon Baek, Jooyoung Lim, Dongjin Kim, Taehyun Park
J. Korean Soc. Precis. Eng. 2025;42(11):901-907.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.052

The polymer electrolyte membrane fuel cell (PEMFC) generates electrical energy through electrochemical reactions and is a key technology for sustainable energy. The electrolyte membrane significantly affects performance under varying conditions. This study examines the impact of membrane thickness and relative humidity (RH) on PEMFC performance using j-V curves and electrochemical impedance spectroscopy (EIS). Experiments were conducted with membrane thicknesses of 30, 15, and 5 μm under RH conditions of 100%-100% and 100%-0%. Under RH 100%-100%, performance improved as the membrane thickness decreased, with values of 954, 1050, and 1235 mW/cm² for the 30, 15, and 5 μm membranes, respectively. The 5 μm membrane demonstrated a 23% performance improvement over the 30 μm membrane. Under RH 100%-0%, performances were 422, 642, and 852 mW/cm², with degradation rates of 55.8%, 39.0%, and 32.1%. The 5 μm membrane exhibited the lowest degradation rate, indicating superior performance under low humidity. These results suggest that thinner membranes generally enhance performance and maintain efficiency even in dry conditions.

  • 105 View
  • 5 Download

SPECIALs

Trends in Amyotrophic Lateral Sclerosis Microphysiological Systems and the Challenges
Hee-Gyeong Yi, Sang-Jin Lee, Yeong-Jin Choi, Jin-A Kim
J. Korean Soc. Precis. Eng. 2025;42(9):703-711.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.095

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by the progressive degeneration of motor neurons and muscle atrophy. Despite extensive clinical research, effective treatments remain scarce due to the complexity of the disease's mechanisms and the inadequacy of current preclinical models. Recent advancements in microphysiological systems (MPS) present promising alternatives to traditional animal models for studying ALS pathogenesis and evaluating potential therapies. This review outlines the latest developments in ALS MPS, including co-culture membrane-based systems, microfluidic compartmentalization, microarray platforms, and modular assembly approaches. We also discuss key studies that replicate ALS-specific pathologies, such as TDP-43 aggregation, neuromuscular dysfunction, and alterations in astroglial mitochondria. Additionally, we identify significant challenges that need to be addressed for more physiologically relevant ALS modeling: replicating neural fluid flow, incorporating immune responses, reconstructing the extracellular matrix, and mimicking the pathological microenvironment. Finally, we emphasize the potential of ALS MPS as valuable tools for preclinical screening, mechanistic studies, and personalized medicine applications.

  • 96 View
  • 4 Download
Development of a Hybrid Composite Structure and Bioreactor for Enhanced Bone Regeneration in Dental Implants
Eun Chae Kim, Jun-Kyu Kang, Hun-Jin Jeong, So-Jung Gwak, Seung-Jae Lee
J. Korean Soc. Precis. Eng. 2025;42(9):695-702.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.086

Dental implant surgery usually takes over 6 to 9 months, with 3 to 6 months specifically allocated for osseointegration between the implant and the surrounding bone. To expedite this process, we developed an innovative hybrid composite structure and a bioreactor. This hybrid structure features an assembly-type implant combined with a 3D-printed polycaprolactone (PCL) scaffold. The implant was redesigned in a modular format to enable the insertion of a scaffold between components, facilitating bone-to-bone contact instead of metal-to-bone contact, which enhances osseointegration. The PCL scaffold was coated with polydopamine (PDA) to improve cell adhesion. Additionally, a bioink that mimics bone composition, consisting of type I collagen and nano-hydroxyapatite (nHA), was incorporated into the scaffold. To support cell maturation within the scaffold, we developed a hydrostatic pressure bioreactor system that applies uniform compressive stress to complex 3D structures. We assessed cell viability in the scaffold using the CCK-8 assay, and SEM imaging confirmed the effectiveness of the PDA coating. Furthermore, we evaluated osteogenic differentiation through ALP activity and calcium quantification assays under both static and dynamic stimulation conditions.

  • 79 View
  • 7 Download

REGULAR

Study on UV Energy Effects in High Aspect Ratio Patterning via the Self-propagating Photopolymer Waveguide (SPPW) Method
Jun Ho Song, Woo Young Kim, Seungwoo Shin, Seok Kim, Young Tae Cho
J. Korean Soc. Precis. Eng. 2025;42(9):757-762.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.041

This study quantitatively examines the impact of ultraviolet (UV) intensity and energy on the formation of high aspect ratio (HAR) microstructures using the Self-Propagating Photopolymer Waveguide (SPPW) process. This mechanism relies on the self-focusing of UV light within a refractive index gradient, allowing the light to propagate and polymerize vertically beyond the initial exposure zone. Experiments were performed at UV intensities of 7.5, 12.5, and 17.5 mW/cm2, with energy levels ranging from 0.0375 to 13.5 J/cm2. The results indicated that a lower UV intensity of 7.5 mW/cm2 produced uniform and vertically elongated structures, achieving a maximum aspect ratio of 12.26 at 0.9 J/cm2. In contrast, higher UV intensities led to lateral over-curing, base expansion, and shape distortion, primarily due to rapid polymerization and the oxygen inhibition effect. These findings emphasize the importance of precisely controlling both UV intensity and energy to produce uniform, vertically aligned HAR microstructures, offering valuable insights for optimizing the SPPW process in future microfabrication applications.

  • 81 View
  • 2 Download
Articles
Optimized Microstructures for High Performance Ag/MWCNT/Ecoflex- based Flexible Pressure Sensors
Hyeon Yun Jeong, Jeong Beom Ko
J. Korean Soc. Precis. Eng. 2025;42(8):657-664.
Published online August 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.065
Recently, flexible pressure sensors featuring enhanced sensitivity and durability through nano/micro additive manufacturing have been employed in various fields, including medical monitoring, E-skin technology, and soft robotics. This study focuses on the fabrication and verification of an interdigitated electrode (IDE) based flexible pressure sensor that incorporates microstructures, utilizing a direct patterning-based additive process. The IDE-patterned sample was designed with a total size of 7.95 × 10 mm2, a line width of 150 µm, a spacing of 200 µm, and a probe pad measuring 1.25 × 2 mm2. It was fabricated using AgNP ink on a primed 100 µm thick polyethylene naphthalate (PEN) substrate. The electrode layer was subsequently covered with a sensing layer made of a MWCNT/Ecoflex composite material, resulting in the final pressure sensor sample. Measurements indicated that the sensor exhibited good sensitivity and response speed, and it was confirmed that further improvements in sensitivity could be achieved by optimizing the size, spacing, and height of the microstructures. Building on the flexible pressure sensor structure developed in this study, we plan to pursue future research aimed at fabricating array sensors with integrated circuits and exploring their applicability in wearable devices for pressure sensing and control functions.
  • 66 View
  • 5 Download
Laser-induced Process for Fabrication of Silicon Microstructure
Sung Jin Park, Bongchul Kang
J. Korean Soc. Precis. Eng. 2025;42(7):499-503.
Published online July 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.053
Silicon is a key material in advanced technologies due to its thermal stability, appropriate bandgap, and wide applicability for advanced devices. Si microstructures offer enhanced surface area, thus improving performances for energy storage and biosensing applications. However, conventional top-down fabrication methods are complex, costly, and environmentally unfriendly as they rely on cleanroom facilities and toxic chemicals. This study proposed a simplified, eco-friendly bottom-up laser-based process to fabricate silicon microstructures. By controlling laser parameters during the interaction with silicon nanoparticles, diverse Si structures can be fabricated by Si nanoparticle coating and laser irradiation.
  • 68 View
  • 8 Download